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Understanding char  r e a c t i v i t y  is important  s ince  the consumption of char  is the  
s lowest  and, t h e r e f o r e ,  the  c o n t r o l l i n g  process in combustion o r  gas i f ica t ion .  
Reviews of char  r e a c t i v i t y  (1.2) demonstrate t h a t  there  is a wide v a r i a t i o n  in 
observed r e a c t i v i t i e s .  
v a r i a t i o n s  (one and h a l f  o rders  of magnitude) in char r e a c t i v i t y  wi th  method of 
formation. S i m i l a r l y ,  Ashu e t  a l .  (4) found an enhanced r e a c t i v i t y  of  char  caused by 
rapid hea t ing  of the  precursor  coal. More recent ly ,  in a v e r t i c a l  tunnel  furnace, 
Essenhigh and Farzar  (5) measured very rapid burnout times f o r  s m a l l  coa l  p a r t i c  es. 
They ascr ibed t h i s  t o  t h e  f i r i n g  condi t ion whichkave r a t e s  of heat ing in t h e  10 K/s 
regime, compared w i t h  the  more usual  value of 10 
Nsakala has repor ted  a v i d e  v a r i a t i o n  in r e a c t i v i t y  associated wi th  rank (6). 

The g a s i f i c a t i o n  or combustion reac t ions  of char  a r e  genera l ly  descr ibed a s  f a l l i n g  
i n t o  three  r a t e  c o n t r o l l i n g  regimes where the r e a c t i o n  r a t e  is l i m i t e d  by: 
i n t r i n s i c  r e a c t i v i t y  of t h e  char  i t s e l f ,  2 )  d i f f u s i o n  of reactar . ts  w i t h i n  t h e  char 
pores, and 3) d i f f u s i o n  of r e a c t a n t s  between t h e  char ' s  surface and t h e  ambient 
atmosphere. In t h i s  work t h e  focus is on the  i n t r i n s i c  r e a c t i v i t y  where the  
cont ro l l ing  f a c t o r s  are the  surface area,  a c t i v e  s i te  densi ty ,  and c a t a l y t i c  e f f e c t  
of minerals. The o b j e c t i v e  or the  s tudy descr ibed here  vas  t o  determined how these 
f a c t o r s  vary wi th  c o a l  rank, char  formation condi t ions and minera l  matter content. 

This  paper r e p o r t s  on an empir ica l  s tudy of the  r e a c t i v i t y  of a s e t  of chars from a 
v a r i e t y  of d i f f e r e n t  c o a l s  prepared by pyro lys i s  a t  heat ing r a t e s  between 0.5 and 
20,000°C/sec t o  tempera tures  between 400 and 1600'C. R e a c t i v i t i e s  were measured 
with a TGA. using t h e  widely used method of monitoring the weight l o s s  a t  constant  
temperature i n  the  presence of 02 or  C02. 
weight l o s s  v a s  measured while  the  sample vas  heated a t  a constant  heat ing r a t e  in 
the  presence of the  r e a c t i v e  gas. This  method has  t h e  advantage t h a t  t h e  same 
condi t ions can be used f o r  chars  of widely varying reac t iv i ty .  
by the two methods c o r r e l a t e d  w e l l  wi th  each other. 
c o r r e l a t i o n s  of t h e  r e a c t i v i t i e s  wi th  t h e  char formation condi t ions and t h e  char 
proper t ies  ( inc luding  sur face  a rea ,  hydrogen concentrat ion and minera l  concentration). 

BxpEBIlIEarAL 

Work descr ibed by Snoot (3) h i g h l i g h t s  t h e  very l a r g e  

b 
K/s i n  slower burning flames. 

1) 

A new technique v a s  developed in which the 

R e a c t i v i t i e s  measured 
The paper w i l l  p resent  

Char  P r e p a r a t i o n  - Chars f o r  t h i s  s tudy were prepared from the  200 x 325 mesh sieved 
f r a c t i o n s  of c o a l s  and l i g n i t e s  l i s t e d  in Table I. 
PYro~Ysis  i n  an i n e r t  atmosphere in one of four  reactors :  
en t ra ined  f low r e a c t o r  (EFR) (7.8) with  coa l  p a r t i c l e  temperatures  between 650 and 
1600°C a t  hea t ing  r a t e s  of N1O,OOO°C/sec; 2) a heated tube reac tor  (9) wi th  coa l  
P a r t i c l e  temperatures  between 650°C and 950°C a t  heat ing r a t e s  of  IV 20,000°C/sec; 3) a 
thermogravimetr ic  ana lyzer  (TGA) wi th  c o a l  p a r t i c l e  temperatures  of 450°C to  900°C a t  
heat ing r a t e s  of OS°C/sec; and 4) a heated gr id  reac tor  (HGR) with  c o a l  temperatures 
Of 400°C t o  900OC a t  h e a t i n g  r a t e s  o f  W100O0C/sec. (10). 

W C t i v i t Y  Measurements - I n i t i a l  char r e a c t i v i t y  measurements were made using the 
isothermal  measurement developed a t  Pennsylvania S t a t e  Universi ty  (11). 
method, the char  is heated in a TGA in nit rogen t o  the  des i red  temperature, usual ly  
400-500°C. 
l i m i t a t i o n s  a r e  present ,  Le., by varying the flow r a t e ,  bed depth and p a r t i c l e  size. 
After t h e  weight of t h e  sample has  s t a b i l i z e d  a t  the se lec ted  temperature  leve l ,  the  
n i t rogen  f l o w  is switched t o  a i r  and the weight loss is monitored. The t i m e  f o r  50% 

The chars  were prepared by 
1) an atmospheric pressure 

In t h i s  

The temperature  l e v e l  is chosen t o  make s u r e  no oxygen d i f f u s i o n  
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burnoff, 7 0 5 ,  1s used as t h e  r e a c t i v i t y  index. 
used the  maximum r a t e  of weight loss as a r e a c t i v i t y  index, which 1s determined i n  a 
s i m i l a r  isothermal  experiment (12). 

I n  our char c h a r a c t e r i z a t i o n  work, w e  had d i f f i c u l t y  applying the  i so thermal  
techniques t o  chars  formed over a wide range of conditions. 
selected f o r  one char  w a s  inappropr ia te  f o r  another. The temperature  w a s  e i t h e r  too 
high f o r  t h e  r a t e  t o  be chemical ly  control led or too low f o r  t h e  7 0 . 5  t o  be reached 
i n  a reasonable t i m e  period. 

I n  order t o  overcome t h i s  d i f f i c u l t y ,  a non-isothermal technique was developed. 
Perkin-Elmer TGA 2 was used f o r  t h i s  method. The sample s i z e  1s about 1.5 mg. The 
sample 1s heated i n  a i r  a t  a r a t e  of 30 K/min u n t i l  a temperature of 900'C i s  
reached. The TGA records  t h e  sample weight continuously and, a t  t h e  end of the  
experiment, the  weight and d e r i v a t i v e  a r e  plotted. 
the  North Dakota (Zap) l i g n i t e ,  the  Montana Rosebud subbituminous coa l  and t h e  
Pi t tsburgh Seam bituminous coa l  a r e  shown i n  Pig. 1. 
chars  prepared i n  t h e  (EPR), i n  which i t  was ca lcu la ted  t h a t  t h e  p a r t i c l e s  were 
heated a t  about 7000 K/s  t o  700°C before being quenched. 
v a s  prepared i n  t h e  heated tube reac tor  (HTR) under s i m i l a r  conditions. 
were oxidized wi th  an a i r  f low of 40 cc/min and a n i t rogen  purge f low of 40 cclmin. 
The Zap l i g n i t e  i n d i c a t e s  burnout of severa l  components of t h e  char  of d i f f e r e n t  
r e a c t i v i t y ,  u h i l e  t h e  Rosebud and Pi t t sburgh  coa ls  show more homogeneous burnout a t  
higher temperatures. 

The c h a r a c t e r i s t i c s  of the  weight loss curve can be understood a s  fol lows:  
temperature, there  i s  an i n i t i a l  weight loss as moisture is removed. 2)  AS the 
temperature is ra i sed ,  t h e  r e a c t i v i t y  of t h e  char  increases  u n t i l  the  f r a c t i o n a l  
weight loss r a t e  i s  s u f f i c i e n t l y  l a r g e  t o  be observed. The sample s i z e  and oxygen 
flows a r e  chosen SO t h a t  the  i n i t i a l  10% of weight l o s s  occurs  under i n t r i n s i c  
r e a c t i v i t y  control. 3) AS t h e  temperature cont inues t o  increase,  t h e  r e a c t i v i t y  
increases  u n t i l  eventua l ly  a l l  the oxygen reaching the  sample bed is consumed and the  
weight loss is cont ro l led  by t h e  oxygen supply to  the sample bed alone. Then the  
f r a c t i o n a l  weight l o s s  rate becomes constant  f o r  a l l  samples. 4) When the char  has  
components of d i f f e r e n t  r e a c t i v i t y ,  the  weight 108s can swi tch  between being oxygen 
supply l i m i t e d  and being i n t r i n s i c  r e a c t i v i t y  l i m i t e d  as each component i s  consumed. 

Figure 2 compared the  weight l o s s  curves f o r  the  same char  sample but  wi th  d i f f e r e n t  
sample s izes .  The curves a r e  i d e n t i c a l  f o r  the  i n i t i a l  weight loss which is 
control led by the  i n t r i n s i c  r e a c t i v i t y .  
loss (l/mo)(dm/dt) decreases  wi th  increasing sample s i z e  i n  the  oxygen supply l imi ted  
regime. 

Another group a t  Penn S t a t e  has 

A temperature  l e v e l  

A 

Some representa t ive  curves  f o r  

The Zap and P i t t s b u r g h  were 

The Montana Rosebud char 
The samples 

1) A t  low 

AS expected, t h e  f r a c t i o n a l  r a t e  of weight 

RESULTS 

Comparison of I so thermal  and Constant Beating Rate Reac t iv i ty  T e s t s  - The temperature 
(Tcr) a t  which the  d e r i v a t i v e  of the  f r a c t i o n a l  weight l o s s  wi th  r e s p e c t  t o  time 
reaches a value of 0.11 wt .  f ract ion/min was chosen a s  an index of r e a c t i v i t y  t o  be 
compared wi th  the  T o . 5  values  measured by the  isothermal  technique. 
c r i t i c a l  s lope used i s  a r b i t r a r y .  
unambiguously determined, but  smal l  enough SO t h a t  reac t ion  occurs  i n  the  chemical ly  
control led regime. 
cor re la t ion  was observed. 

It was subsequently decided t h a t  a comparison t o  q0 .1  ( t i m e  f o r  10% burnoff) would 
be more re levant  s ince  t h e  i n i t i a l  r e a c t i v i t y  indicated by Tcr would be measured, 
ra ther  than an i n t e g r a l  r e a c t i v i t y  over a l a r g e  ex ten t  of conversion which i s  
af fec ted  by r e a c t i v i t y  v a r i a t i o n s  due t o  changes i n  the  pore s t r u c t u r e  or sample 

The a c t u a l  
A value i s  chosen which i s  l a r g e  enough t o  be 

Values of lnf0.5 were p lo t ted  aga ins t  l / T c r  and a good 
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inhomogeniety. 
data for chars from all three coals in all four reactors. 
conditions covered the following ranges: heating rate - 0.5 to 20,000 K/sec; 
temperature - 400 to 1600OC; residence time * .020 s to 30 min; pressure - 0 to 200 psig. 
It can be shown that a plot Of h 7 o . l  vs l/Tcr will be linear with a slope equal to 
E/R, where E is the global activation energy for the intrinsic oxidation rate and R is 
the gas constant. For the reaction 

A plot Of In 70.1 v8 l/Tcr is shown in Fig. 3. This plot includes 
The experimental 

C (solid) + O2 (gas) - CO2 (gas) (1) 

the global rate of disappearance of carbon can be represented as follovs: 

dm/dt = -ks C: W/S (2 )  

where dm/dt is the mass loss of carbon per particle in unit time ( /min). k 

concentration of oxygen at the surface in moles/cm 
molecular weight of carbon In qmole,b is the ratio of active area per unit 
accessible surface area (cm2/cm ) and S is the accessible surface area in cm2 per 
particle. Since the reaction occurs under chemical reaction control, the 
concentration of oxygen at the surface will be equal t o  the bulk concentration, which 
allows one to drop the subscript. 

In the isothermal experiment, the burn-off rate is nearly constant up to 10% weight 
loss: 

is the 

raised to some power n, W is the 
intrinsic reaction rate constant based on unit s u p c e  (cm/min), Cs % is the 

dm/dt= A d A t = -  0.1 m170,1 (3 )  

Substituting Eq. 2 for dm/dt: 

-ks Cn U P S  = 0.1 m / 7 0 m 1  (4) 

= [ 0.1 m/ks(To)Cn W ] [ lv S ]  ( 5 )  

( 6 )  - K1 [ '9 s]  
The quantities in the first set of brackets in Eq. 5 are nearly constant for a given 
isothermal (temperature = To) experiment at low conversions and independent of coal 
type, while the second set of brackets contain quantities which vary with coal type 
and char formation conditions. 

For the non-isothermal experiment, the relative rate of mass loss is constant at some 
critical temperature, T ~ ~ :  

The result obtained is that ks is proportional to an experimental constant and 
inversely proportional to char properties. 

For data collected on the same char sample, ( F S )  can be eliminated between Eqs. 6 
and 9: 

or 
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I, 
\ 

7 0 . 1  * 0.9 exp [-E/R [l/Tcr - l / T o ] ]  (11) 

assuming t h a t  ks can be expressed a s  an Arrhenius expression ks(T) - ko exp(-E/RT). 

Consequently, a p l o t  of ln?Oal vs  l / T c r  v i 1 1  have a s lope equal  t o  -E/R of t h e  
i n t r i n s i c  g loba l  ox ida t ion  rate. 
should be t h e  same f o r  chars  from a l l  coa ls  and chars  from the  same c o a l  prepared 
under a v i d e  v a r i e t y  of conditions. 
Support t h i s  conclusion. 
d i f  ferent. The mechanism of the  oxidat ion reac t ion  probabfy changes wi th  temperature, 
as indica ted  by t h e  v i d e  range of a c t i v a t i o n  energ ies  and r e a c t i o n  orders  reported f o r  
the  char oxidat ion reac t ion  i n  t h e  l i t e r a t u r e  (13). The bes t  f i t  value of about 
35 kcal lmole determined from Fig. 3 i s  in te rmedia te  i n  reported values  and c lose  t o  
t h e  value of 31 kcal lmole determined by Radovic and Walker f o r  a v i d e  range of chars  
i n  TGA experiments (14). 

I n  our case, the Zap l i g n i t e  chars  appear t o  f a l l  on a l i n e  of l o v e r  slope. This  i s  
probably due t o  c a t a l y t i c  e f f e c t s .  When a l i g n i t e  char v a s  acid-vashed, i t  v a s  less 
r e a c t i v e  i n  the non-isothermal test. The companion isothermal  test has  not  ye t  been 
done, so we have not y e t  determined vhere t h e  acid-vashed char  f a l l s  on t h e  p l o t  of 
Fig. 3. 

Variations i n  R e a c t i v i t y  - The r e a c t i v i t i e s  v e r e  determined f o r  a number of chars  
vhich had been prepared under c a r e f u l l y  cont ro l led  condi t ions  t o  s tudy t h e i r  pyro lys i s  
behavior (7-11.15). Examples t o  i l l u s t r a t e  the  observed t rends  a r e  presented i n  Fig. 4. 
Figure 4a i l l u s t r a t e s  the  r e s u l t s  f o r  the Zap l ign i te .  The three  curves  a r e  for: 1) 
150 msec v i t h  maximum temperature of  700°C (wi th  r e a c t i v i t y  measured i n  a i r ) ;  2) 460 
msec with maximum temperature  of 1600'C ( i n  air); 3) same a s  2 but r e a c t i v i t y  i n  COz. 
The curves i l l u s t r a t e  the observat ion t h a t  the  r e a c t i v i t y  goes down v i t h  increased 
exposure t o  high temperature  (or "extent  of pyrolysis") and t h a t  f o r  the  same chars, 
CO2 r e a c t i v i t y  i s  lower than oxygen reac t iv i ty .  Measurements of s u r f a c e  a r e a  S shoved 
t h a t  char f o r  condi t ions 1 and 2 vere  similar, suggest ing t h a t  the  d i f f e r e c n e  i n  
r e a c t i v i t y  i s  causes  by a change i n  the  dens i ty  of a c t i v e  sites.! . 
r e s u l t s  f o r  P i t t sburgh  Seam coal. The three  curves a r e  for ;  4) 150 msec v i t h  a 
maximum temperature of 700°C ( i n  a i r ) ;  5) 660 msec with a maximum temperature  of 
1100°C ( i n  a i r )  and 6) same a s  5 but r e a c t i v i t y  i n  Cor 
4). the  r e a c t i v i t y  f o r  the  P i t t sburgh  Seam coal  i s  lower than for t h e  Zap l i g n i t e  
prepared under equivalent  conditions. 
Seam coal  (vhich m e l t s  dur ing pyrolysis)  t o  have about 1 / 4  t h e  sur face  a r e a  of t h e  Zap 
l ign i te .  This d i f fe rence  i n  surface area is not s u f f i c i e n t  t o  account f o r  the  
d i f fe rences  i n  r e a c t i v i t y ,  however. The e x t r a  r e a c t i v i t y  appears  t o  r e s u l t  from the 
l i g n i t e ' s  mineral  content ,  but  could a l s o  be due t o  a d i f fe rence  i n  a c t i v e  s i te  
dens i t ies .  Figure 4c compares curve 7 f o r  the  Zap l i g n i t e  wi th  curve 8 f o r  t h e  
demineral ized coa l  and curve 9 f o r  a Montana Rosebud pyrolyzed under similar 
condi t ions and having a s i m i l a r  surface area. Curves 8 and 9 a r e  similar, but lover  
i n  r e a c t i v i t y  than t h e  rav l ign i te .  Figure 4 i l l u s t r a t e s  t h e  v a r i a t i o n  i n  r e a c t i v i t y  
wi th  sur face  areas ,  wi th  a c t i v e  site densi ty ,#  and wi th  mineral  content. 

Figure 5 summarizes t h e  r e s u l t s  f o r  a number of samples. 
is p lo t ted  a s  a func t ion  of  t h e  hydrogen content  which i s  used as a measure of t h e  
ex ten t  of pyrolysis. For each char type, t h e r e  is a t rend f o r  increas ing  Tcr with 
decreasing hydrogen. Most of the  change occurs  belov 2 1/22: hydrogen, a f t e r  the 
evolut ion of a l i p h a t i c  hydrogen i s  complete. That is. the  Tcr v a r i e s  pr imar i ly  with 
the  concentrat ion of aromatic  hydrogen. 
oxygen i n  t h e  char vhich i s  removed a t  about the  same r a t e  a s  the hydrogen and which 
may be r e l a t e d  t o  the r e a c t i v i t y  changes. 
possibly cor re la ted  wi th  t h e  r i n g  condensation accompanying t h e  e l i m i n a t i o n  of 
aromatic  hydrogen. 

I n  the  absence of c a t a l y t i c  e f f e c t s ,  t h e  value of E 

The near ly  l i n e a r  d a t a  i n  Fig. 3 appears  to 
A problem may a r i s e  i f  Tcr and T are s i g n i f i c a n t l y  

Figure 4b shows 

For equivalent  cases  (1 and 

Surface area measurements show t h e  P i t t sburgh  

The c r i t i c a l  temperature  Tcr 

It should be noted t h a t  t h e r e  i s  a l s o  r ing  

This  v a r i a t i o n  is due t o  a v a r i a t i o n  i n  P 
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The v e r t i c a l  displacement  of t h e  curves is due t o  t h e  v a r i a t i o n s  i n  char  sur face  area 
and c a t a l y t i c  a c t i v i t y  of t h e  minerals. 
l i g n i t e .  A s  pyro lys i s  
proceeds the c r i t i c a l  temperature  T 
temperature as hydrogen i s  lost. T&e does not  appear t o  be any d r a s t i c  e f f e c t s  due 
t o  heat ing r a t e ,  as  chars  f o r  a wide range of condi t ions  a l l  f e l l  along the  same 
curve. 
(high N a  and Ca). When t h e  c o a l  was demineralized ( s y m b o l v ) ,  Tcr increased 
subs tan t ia l ly .  
higher  Tc, than the  raw Zap. 

The highest Tcr values  a r e  f o r  the  P i t t sburgh  and Kentucky coals. 
pyrolysis. I n i t i a l  sur face  area measurements of the  P i t t sburgh  coa l  show 
approximately 50 m2/g, suggest ing t h a t  the  lower sur face  a reas  a r e  respons ib le  f o r  the  
lower reac t iv i ty .  Note t h a t  t h e  r e a c t i v i t y  of s lowly heated P i t t sburgh  Seam coal  is 
higher  than t h a t  of a r a p i d l y  heated char. 

5 for the Zap 
The most r e a c t i v e  chars  a r  

The chars  have sur face  areas i n  the  neighborhood of  200 m /g. 
f i r s t  decreases  and then increases  with 

The low values  of TCr are bel ieved t o  be due to the  char ' s  mineral  content  

A Montana Rosebud char wi th  a similar sur face  a r e a  shows a somewhat 

These s w e l l  upon 

CONCLUSION 

A new r e a c t i v i t y  test has  been developed which a l lows  r e l a t i v e  r a t e s  of r e a c t i v i t y  t o  
be determined f o r  c h a r s  of widely varying reac t iv i ty .  
the  dependence of r e a c t i v i t y  on coal  proper t ies  and pyro lys i s  conditions. 
a r e  seen t o  decrease w i t h  decreasing aromatic  hydrogen concentration. R e a c t i v i t i e s  
were insens i t ive  t o  hea t ing  r a t e  f o r  a l i g n i t e  but were q u i t e  s e n s i t i v e  t o  heat ing 
r a t e  f o r  a bituminous coal .  Mineral c a t a l y t i c  e f f e c t s  were a l s o  observed. 

The method was appl ied to  study 
Reac t iv i t ies  
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Carbon 

Hydrogen 

Nitrogen 

Sul fur  

TABLE I 

!UMPLE PROPEXTIBS 

Wl'% DAF 

Zap. North Montana Rosebud P i t t s b u r g h  Seam Kentucky #!4 
Dakota L i g n l t e  Subbituminous Bituminous Bituminous 

66.5 72.1 82.1 81.7 

4.8 4.9 5.6 5.6 

1.1 1.2 1.7 1.9 

1.1 1.2 2.4 

Oxygen @ i f f . )  26.5 

Ash (Dry Ut%) 7.1 

20.3 

10.0 

8.2 

9.2 14.1 
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Figure 1. Non-isothermal TCA React iv i ty  Tes t s  a t  
40 cclmin A i r  Flow. 
Rosebud, and c )  Pittsburgh Seam. 

a)  Zap Lign i te ,  b) Montana 
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Figure 4 .  Comparison of Char React iv i ty  Curves 
Prepared for  Three Coals Under a Variety of 
Condit ions.  Curves 3 and 6 are f o r  React iv i ty  i n  
CO . A l l  the Rest are f o r  React iv i ty  i n  Air. 
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Figure 5. 
Concentration i n  the  Char ( t h e  ex tent  of p y r o l y s i s )  and 
with Coal Type. 

Variat ions i n  React iv i ty  with the  Hydrogen 
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